Abstract
AbstractBackgroundObesity, metabolic disease and some psychiatric conditions are associated with changes to relative abundance of bacterial species and specific genes in the fecal microbiome. Little is known about the impact of pharmacologically induced weight loss on distinct gut microbiome species and their respective gene programs in obese individuals.ResultsUsing shotgun metagenomics, the composition of the microbiome was obtained for two cohorts of obese female Wistar rats (n=10-12, total of 82) maintained on a high fat diet before and after a 42-day treatment with a panel of four investigatory or approved anti-obesity drugs (tacrolimus/FK506, bupropion, naltrexone and sibutramine), alone or in combination. We found that sibutramine treatment induced consistent weight loss through reducing food intake. Decreased weight loss in sibutramine-treated rats was associated with changes to the gut microbiome that included increased beta-diversity, increased Bacteroides/Firmicutes ratio and increased relative abundance of multiple Bacteroides species. In addition, the relative abundance of multiple genes was found to be differentially abundant, including significant reductions in components of flagellum and genes involved in flagellum assembly.ConclusionsThis study provides a large resource comprising complete shotgun metagenomics datasets of the fecal microbiome coupled with weight change and food intake at day 3, day 15 and day 42 from 82 obese rats treated with a range of compounds used for weight loss, which are available to the community for detailed analysis. Furthermore, by conducting a detailed analysis of the microbiome associated with sibutramine-induced weight loss, we have identified multiple weight-loss associated microbial taxa and pathways. These include a reduction in components of flagellum and the flagellum assembly pathway that points to a potential role of sibutramine-induced weight-loss on regulating bacterially driven anti-inflammatory responses.
Publisher
Cold Spring Harbor Laboratory