DeLUCS: Deep Learning for Unsupervised Clustering of DNA Sequences

Author:

Arias Pablo Millán,Alipour Fatemeh,Hill Kathleen A.,Kari Lila

Abstract

AbstractWe present a novel Deep Learning method for the Unsupervised Clustering of DNA Sequences (DeLUCS) that does not require sequence alignment, sequence homology, or (taxonomic) identifiers. DeLUCS uses Frequency Chaos Game Representations (FCGR) of primary DNA sequences, and generates “mimic” sequence FCGRs to self-learn data patterns (genomic signatures) through the optimization of multiple neural networks. A majority voting scheme is then used to determine the final cluster assignment for each sequence. The clusters learned by DeLUCS match true taxonomic groups for large and diverse datasets, with accuracies ranging from 77% to 100%: 2,500 complete vertebrate mitochondrial genomes, at taxonomic levels from sub-phylum to genera; 3,200 randomly selected 400 kbp-long bacterial genome segments, into clusters corresponding to bacterial families; three viral genome and gene datasets, averaging 1,300 sequences each, into clusters corresponding to virus subtypes. DeLUCS significantly outperforms two classic clustering methods (K-means++ and Gaussian Mixture Models) for unlabelled data, by as much as 47%. DeLUCS is highly effective, it is able to cluster datasets of unlabelled primary DNA sequences totalling over 1 billion bp of data, and it bypasses common limitations to classification resulting from the lack of sequence homology, variation in sequence length, and the absence or instability of sequence annotations and taxonomic identifiers. Thus, DeLUCS offers fast and accurate DNA sequence clustering for previously intractable datasets.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3