A systematic comparison of fibroblasts derived from postmortem human dura mater versus dermal epithelium for neurodegenerative disease modeling

Author:

Argouarch Andrea R.,Cosme Celica G.,Garcia Kristle,Corrales Christian I.,Nana Alissa L.,Karydas Anna M.,Spina Salvatore,Grinberg Lea T.,Miller Bruce,Goodarzi Hani,Seeley William W.,Kao Aimee W.

Abstract

ABSTRACTPatient-derived cells hold great promise for precision medicine approaches in human health. Fibroblast cells have been a major source of human cells for reprogramming and differentiating into specific cell types for disease modeling. Such cells can be isolated at various stages during life (presymptomatic, symptomatic, and postmortem) and thus can potentially be used to model different phases of disease progression. In certain circumstances, however, tissues are not collected during life and only postmortem tissues are the only available source of fibroblasts. Fibroblasts cultured from postmortem human dura mater of individuals with neurodegenerative diseases have been suggested as a primary source of cells for in vitro modeling of neurodegenerative diseases. Although fibroblast-like cells from human and mouse dura mater have been previously described, their utility for reprogramming and direct differentiation protocols requires further characterization. In this study, cells derived from dermal biopsies performed in living subjects were compared to cells derived from postmortem dura mater. In two instances, we have isolated and compared dermal and dural cell lines from the same subject. Notably, striking differences between the dermis and dura mater-derived cell lines were found. Compared to dermal fibroblasts, postmortem dura mater-derived cells demonstrated different morphology, exhibited slower growth rates, failed to express fibroblast protein markers, and exhibited significant differences in gene expression profiles. In addition, dura mater-derived cells were found to exhibit a high rate of chromosomal abnormalities, particularly in the loss of the Y chromosome. Our study highlights potential limitations of postmortem human dura mater-derived cells for disease modeling, argues for rigorous karyotyping prior to reprograming, and brings into question the identity of dura mater-derived cells as belonging to a fibroblast lineage.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3