Harnessing natural variation to identify cis regulators of sex-biased gene expression in a multi-strain mouse liver model

Author:

Matthews Bryan J.,Waxman David J.ORCID

Abstract

AbstractSex differences in gene expression are widespread in the liver, where a large number of autosomal factors act in tandem with growth hormone signaling to regulate individual variability of sex differences in liver metabolism and disease. Here, we compare hepatic transcriptomic and epigenetic profiles of mouse strains C57Bl/6J and CAST/EiJ, representing two subspecies separated by 0.5-1 million years of evolution, to elucidate the actions of genetic factors regulating liver sex differences. We identify 144 protein coding genes and 78 lncRNAs showing strain-conserved sex bias; many have gene ontologies relevant to liver function, are more highly liver-specific and show greater sex bias, and are more proximally regulated than genes whose sex bias is strain-dependent. The strain-conserved genes include key growth hormone-dependent transcriptional regulators of liver sex bias; however, three other transcription factors, Trim24, Tox, and Zfp809, lose sex-biased expression in CAST/EiJ mouse liver. To elucidate these strain specificities in expression, we characterized the strain-dependence of sex-biased chromatin opening and enhancer marks at cis regulatory elements (CREs) within expression quantitative trait loci (eQTL) regulating liver sex-biased genes. Strikingly, 208 of 286 eQTLs with strain-specific, sex-differential effects on expression were associated with a complete gain, loss, or reversal of expression sex differences between strains. Moreover, 166 of the 286 eQTLs were linked to the strain-specific gain or loss of localized sex-biased CREs. Remarkably, a subset of these CREs lacked strain-specific genetic variants yet showed coordinated, strain-dependent sex-biased epigenetic regulation. Thus, we directly link hundreds of strain-specific genetic variants to the high variability in CRE activity and expression of sex-biased genes, and uncover underlying genetically-determined epigenetic states controlling liver sex bias in genetically diverse mouse populations.Author summaryMale-female differences in liver gene expression confer sex differences in diverse biological processes relevant to human health and disease, but are difficult to model in inbred mice given their identical genetic backgrounds. Outbred mice provide some variability, but cross-strain studies of sex bias in rodents have not been well studied. Here we elucidate the actions of genetic factors regulating liver sex differences in two Diversity Outbred mouse founder mouse strains, C57Bl/6 and CAST/EiJ. We find that many of the strain differences in sex-biased gene expression can be linked to the gain or loss of a cis regulatory element associated with one or more strain-specific sequence variants. Strikingly, in many cases, the associated cis regulatory element lacked strain-specific variants, yet was subject to coordinated, strain-dependent epigenetic regulation. Thus, harnessing the power of naturally occurring genetic diversity of Diversity Outbred mice, we integrated biological data at the genetic, epigenetic, and transcriptomic levels across evolutionary divergent mouse strains to discover hundreds of localized genomic regions that control phenotypic sex differences in the liver. These findings may serve as a model for studies of human genetic variation and the effect of population-wide variation on sex differences in health and disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3