Ileal derived organoids from Crohn’s disease patients show unique transcriptomic and secretomic signatures

Author:

Niklinska-Schirtz Barbara Joanna,Venkateswaran Suresh,Anbazhagan Murugadas,Kolachala Vasantha L,Prince Jarod,Dodd Anne,Chinnadurai Raghavan,Gibson Gregory,Denson Lee A.,Cutler David J.,Jegga Anil G.,Matthews Jason D.,Kugathasan Subra

Abstract

AbstractBackgroundWe used patient derived organoids (PDOs) to study the epithelial-specific transcriptional and secretome signatures of the ileum during CD with varying phenotypes to screen for disease profiles and potential druggable targets.MethodsRNA sequencing was performed on isolated intestinal crypts and 3-week-old PDOs derived from ileal biopsies of CD patients (n= 8 B1, inflammatory; n= 8 B2, stricturing disease) and non-IBD controls (n= 13). Differentially expressed (DE) genes were identified by comparing CD vs control, B1 vs B2, and inflamed vs non-inflamed. DE genes were used for computational screening to find candidate small molecules that could potentially reverse B1and B2 gene signatures. The secretome of a second cohort (n= 6 non-IBD controls, n=7 CD; 5 non-inflamed, 2 inflamed) was tested by Luminex using cultured organoid conditioned media.ResultsWe found a 90% similarity in both the identity and abundance of protein coding genes between PDOs and intestinal crypts (15,554 transcripts of 19,900 genes). DE analysis identified 814 genes among disease group (CD vs non-IBD control), 470 genes different between the CD phenotypes, and 5 FDR significant genes between inflamed and non-inflamed CD. The PDOs showed both similarity and diversity in the levels and types of soluble cytokines and growth factors they released. Perturbagen analysis revealed potential candidate compounds to reverse B2 disease phenotype to B1 in PDOs.ConclusionPDOs are similar at the transcriptome level with the in vivo epithelium and retain disease-specific gene expression for which we have identified secretome products, druggable targets and corresponding pharmacological agents. Targeting the epithelium could reverse a stricturing phenotype and improve outcomes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3