Phase separation on cell surface: a mechanism of basic fibroblast growth factor signal transduction with heparan sulphate

Author:

Xue Song,Zhou Fan,Zhao Tian,Zhao Huimin,Wang Xuewei,Chen Long,Li Jin-ping,Tan Tianwei,Luo Shi-Zhong

Abstract

AbstractLiquid-liquid phase separation (LLPS) driven by weak, multivalent interactions among biomolecules is an important means of cellular compartmentation and plays a central role in cellular processes including stress resistance, RNA processing and other cellular activities. Coordination of the condensates and inner membrane was recently revealed, mediating intracellular processes like cell signalling and cargo trafficking. Intracellular LLPS has been observed extensively in vivo, whereas LLPS in extracellular compartments has not been reported under physiological conditions. Here we show, for the first time, that basic fibroblast growth factor (bFGF) undergoes LLPS on the cell surface by interacting with heparan sulphate proteoglycans (HSPG) and the phase transition is required for effective downstream signalling. The condensation is driven by multivalent interactions between bFGF and sulpho-groups on heparan sulphate (HS), and dimerization and oligomerization of bFGF promote the LLPS process. Compared with free bFGF, phase separated bFGF with HS showed higher thermo stability, providing a potential mechanism for the preservation of bFGF activity. Furthermore, we have found that downstream signalling is triggered by phase separation of a ternary complex formed by bFGF, HSPGs and FGFR on cell surface. Our results revealed a molecular mechanism that HS can serve as a platform to promote extracellular proteins like bFGF to condensate on outer membrane, consequently coordinating the signal transduction activities. This novel finding expands the horizons of phase separation in vivo, providing a new dimension on how HSPG may regulate extracellular protein behaviour and cell signalling.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3