Leveraging the mass balances of cellular metabolism to infer absolute concentrations from relative abundance metabolomics data

Author:

Lee Justin Y.ORCID,Styczynski Mark P.ORCID

Abstract

AbstractMotivationAs the large-scale study of metabolites and a direct readout of a system’s metabolic state, metabolomics has significant appeal as a source of information for many metabolic modelling platforms and other metabolic analysis tools. However, metabolomics data are typically reported in terms of relative abundances, which precluding use with tools where absolute concentrations are necessary. While chemical standards can be used to determine the absolute concentrations of metabolites, they are often time-consuming to run, expensive, or unavailable for many metabolites. A computational framework that can infer absolute concentrations without the use of chemical standards would be highly beneficial to the metabolomics community.ResultsWe have developed and characterized MetaboPAC, a computational strategy that leverages the mass balances of a system to infer absolute concentrations in metabolomics datasets. MetaboPAC uses a kinetic equations approach and an optimization approach to predict the most likely response factors that describe the relationship between absolute concentrations and their relative abundances. We determined that MetaboPAC performed significantly better than the other approaches assessed on noiseless data when at least 60% of kinetic equations are known a priori. Under the most realistic conditions (low sampling frequency, high noise data), MetaboPAC significantly outperformed other methods in the majority of cases when 100% of the kinetic equations were known. For metabolomics datasets extracted from systems that are well-studied and have partially known kinetic structures, MetaboPAC can provide valuable insight about their absolute concentration profiles.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3