Mice exhibit stochastic and efficient action switching during probabilistic decision making

Author:

Beron Celia C.ORCID,Neufeld Shay Q.ORCID,Linderman Scott W.ORCID,Sabatini Bernardo L.ORCID

Abstract

AbstractIn probabilistic and nonstationary environments, individuals must use internal and external cues to flexibly make decisions that lead to desirable outcomes. To gain insight into the process by which animals choose between actions, we trained mice in a task with time-varying reward probabilities. In our implementation of such a “two-armed bandit” task, thirsty mice use information about recent action and action-outcome histories to choose between two ports that deliver water probabilistically. Here, we comprehensively modeled choice behavior in this task, including the trial-to-trial changes in port selection – i.e. action switching behavior. We find that mouse behavior is, at times, deterministic and, at others, apparently stochastic. The behavior deviates from that of a theoretically optimal agent performing Bayesian inference in a Hidden Markov Model (HMM). We formulate a set of models based on logistic regression, reinforcement learning, and ‘sticky’ Bayesian inference that we demonstrate are mathematically equivalent and that accurately describe mouse behavior. The switching behavior of mice in the task is captured in each model by a stochastic action policy, a history-dependent representation of action value, and a tendency to repeat actions despite incoming evidence. The models parsimoniously capture behavior across different environmental conditionals by varying the ‘stickiness’ parameter, and, like the mice, they achieve nearly maximal reward rates. These results indicate that mouse behavior reaches near-maximal performance with reduced action switching and can be described by a set of equivalent models with a small number of relatively fixed parameters.SignificanceTo obtain rewards in changing and uncertain environments, animals must adapt their behavior. We found that mouse choice and trial-to-trial switching behavior in a dynamic and probabilistic two-choice task could be modeled by equivalent theoretical, algorithmic, and descriptive models. These models capture components of evidence accumulation, choice history bias, and stochasticity in mouse behavior. Furthermore, they reveal that mice adapt their behavior in different environmental contexts by modulating their level of ‘stickiness’ to their previous choice. Despite deviating from the behavior of a theoretically ideal observer, the empirical models achieve comparable levels of near-maximal reward. These results make predictions to guide interrogation of the neural mechanisms underlying flexible decision-making strategies.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3