Hydrophobic mismatch effect is a key factor in protein transport on the Tat pathway

Author:

Hao BinhanORCID,Zhou WenjieORCID,Theg Steven M.ORCID

Abstract

AbstractThe twin-arginine translocation (Tat) pathway transports folded proteins across membranes in bacteria, thylakoid, plant mitochondria, and archaea. In most species, the active Tat machinery consists of three independent subunits, TatA, TatB and TatC. TatA and TatB from all bacterial species possess short transmembrane alpha-helices (TMHs), both of which are only fifteen residues long in E. coli. Such short TMHs cause a hydrophobic mismatch between Tat subunits and the membrane bilayer. Here, by modifying the length of the TMHs of E. coli TatA and TatB, we access the functional importance of the hydrophobic mismatch in the Tat transport mechanism. Surprisingly, both TatA and TatB with as few as 11 residues in their respective TMHs are still able to insert into the membrane bilayer, albeit with a decline in membrane integrity. Three different assays, both qualitative and quantitative, were conducted to evaluate the Tat activity of the TMH length mutants. Our experiments indicate that the TMHs of TatA and TatB appear to be evolutionarily tuned to 15 amino acids, with activity dropping off with any modification of this length. We believe our study supports a model of Tat transport utilizing localized toroidal pores that form when the membrane bilayer is thinned to a critical threshold. In this context, the 15-residue length of the TatA and TatB TMHs can be seen as a compromise between the need for some hydrophobic mismatch to allow the membrane to reversibly reach the threshold thinness required for toroidal pore formation, and the permanently destabilizing effect of placing even shorter helices into these energy-transducing membranes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3