Phenotypic plasticity triggers rapid morphological convergence

Author:

Gómez José M.ORCID,González-Megías Adela,Narbona Eduardo,Navarro LuisORCID,Perfectti FranciscoORCID,Armas CristinaORCID

Abstract

AbstractPhenotypic convergence, the independent evolution of similar traits, is ubiquitous in nature, happening at all levels of biological organizations and in most kinds of living beings. Uncovering its mechanisms remains a fundamental goal in biology. Evolutionary theory considers that convergence emerges through independent genetic changes selected over long periods of time. We show in this study that convergence can also arise through phenotypic plasticity. We illustrate this idea by investigating how plasticity drives Moricandia arvensis, a mustard species displaying within-individual polyphenism in flowers, across the morphological space of the entire Brassicaceae family. By compiling the multidimensional floral phenotype, the phylogenetic relationships, and the pollination niche of over 3000 Brassicaceae species, we demonstrated that Moricandia arvensis exhibits a plastic-mediated within-individual floral disparity greater than that found not only between species but also between higher taxonomical levels such as genera and tribes. As a consequence of this divergence, M. arvensis moves outside the morphospace region occupied by its ancestors and close relatives, crosses into a new region where it encounters a different pollination niche and converges phenotypically with distant Brassicaceae lineages. Our study suggests that, by inducing phenotypes that explore simultaneously different regions of the morphological space, plasticity triggers rapid phenotypic convergence.

Publisher

Cold Spring Harbor Laboratory

Reference91 articles.

1. G. R. McGhee , Convergent Evolution: Limited Forms Most Beautiful. MIT Press, Cambridge (2011). ISBN:9780262016421

2. CONVERGENCE, ADAPTATION, AND CONSTRAINT

3. S. C. Morris , Life’s solution: Inevitable Humans in a Lonely Universe. Cambridge University Press, Cambridge (2003). ISBN:9780521603256

4. Convergence and Parallelism in Evolution: A Neo-Gouldian Account

5. D. Schluter , The Ecology of Adaptive Radiation. Oxford Univ. Press, Oxford, U.K. (2000) ISBN:9780198505228

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3