Ser/Thr phospho-regulation by PknB and Stp mediates bacterial quiescence and antibiotic persistence in Staphylococcus aureus

Author:

Huemer MarkusORCID,Shambat Srikanth MairpadyORCID,Pereira Sandro,Van Gestel Lies,Bergada-Pijuan JudithORCID,Gómez-Mejia AlejandroORCID,Chang Chun-ChiORCID,Vulin ClementORCID,Bär JulianORCID,Dworkin JonathanORCID,Zinkernagel Annelies S.ORCID

Abstract

AbstractStaphylococcus aureus colonizes 30 to 50% of healthy adults and can cause a variety of diseases, ranging from superficial to life-threatening invasive infections such as bacteraemia and endocarditis. Often, these infections are chronic and difficult-to-treat despite adequate antibiotic therapy. Most antibiotics act on metabolically active bacteria in order to eradicate them. Thus, bacteria with minimized energy consumption resulting in metabolic quiescence, have increased tolerance to antibiotics. The most energy intensive process in cells – protein synthesis – is attenuated in bacteria entering into quiescence. Eukaryote-like serine/threonine kinases (STKs) and phosphatases (STPs) can fine-tune essential cellular processes, thereby enabling bacteria to quickly respond to environmental changes and to modulate quiescence. Here, we show that deletion of the only annotated functional STP, named Stp, in S. aureus leads to increased bacterial lag-phase and phenotypic heterogeneity under different stress challenges, including acidic pH, intracellular milieu and in vivo abscess environment. This growth delay was associated with reduced intracellular ATP levels and increased antibiotic persistence. Using phosphopeptide enrichment and mass spectrometry-based proteomics, we identified possible targets of Ser/Thr phosphorylation that regulate cellular processes and bacterial growth, such as ribosomal proteins including the essential translation elongation factor EF-G. Finally, we show that acid stress leads to a reduced translational activity in the stp deletion mutant indicating metabolic quiescence correlating with increased antibiotic persistence.One-sentence summaryPhospho-regulation mediates quiescence and antibiotic persistence in Staphylococcus aureus.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3