A complex interplay between balancing selection and introgression maintains a genus-wide alternative life history strategy

Author:

Tunström KalleORCID,Woronik AlyssaORCID,Hanly Joseph J.ORCID,Rastas Pasi,Chichvarkhin AntonORCID,Warren Andrew D,Kawahara Akito,Schoville Sean D.,Ficarrotta Vincent,Porter Adam H.,Watt Ward B.,Martin ArnaudORCID,Wheat Christopher W.ORCID

Abstract

AbstractAlternative life-history strategies (ALHS) are genetic polymorphisms generating phenotypes differing in life histories that generally arise due to metabolic resource allocation tradeoffs. Althouigh ALHS are often be limited to a single sex or populations of a species, they can, in rare cases, be found among several species across a genus. In the butterfly genus Colias, at least a third of the species have a female limited ALHS called Alba. While many females develop brightly pigmented wings, Alba females reallocate nitrogen resources used in pigment synthesis to reproductive development, producing white-winged, more fecund females. Whether this ALHS evolved once or many times, and whether it has moved among species via introgression or been maintained via long-term balancing selection, has not been established. Answering these questions presents an opportunity to investigate the genetic basis and evolutionary forces acting upon ALHS, which have rarely been studied at a genus level. Here we identify the genetic locus of Alba in a second Colias species, allowing us to compare this with previous results in a larger phylogenetic context. Our findings suggest Alba has a singular origin and has been maintained in Colias through a combination of balancing selection and introgression for nearly one million years and at least as many generations. Finally, using CRISPR/Cas9 deletions in the cis-regulatory region of the Alba allele, we demonstrate that the Alba allele is a modular enhancer for the BarH1 gene and is necessary for the induction of the ALHS, which potentially facilitates its long-term persistence in the genus.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3