Elevated nest temperature has opposing effects on host species infested with parasitic nest flies

Author:

Albert Lauren,Rumschlag Samantha,Parker Alexandra,Vaziri Grace,Knutie Sarah A.

Abstract

ABSTRACTHosts have developed or evolved defense strategies, including tolerance and resistance, to reduce damage caused by parasites. Environmental factors, such as elevated temperature, can influence the effectiveness of these different host defenses but also can directly affect parasite fitness. Therefore, the net effect of elevated temperature on host-parasite relationships are determined by its direct effects on the host and the parasite. Furthermore, because host species can defend themselves differently against their parasites, the net effect of temperature might differ across each host’s interaction with the same parasite.Few studies have determined the net effects of temperature on both host defenses and parasites in a multi-host system. To address this gap, we experimentally manipulated temperature and parasite presence in the nests of two host species who defend themselves differently to the same parasitic nest fly (Protocalliphora sialia). Specifically, we conducted a factorial experiment by increasing temperature (or not) and removing all parasitic nest flies (or not) in the nests of tolerant eastern bluebirds (Sialia sialis) and resistant tree swallows (Tachycineta bicolor). We then quantified parasite load in nests and measured nestling body size metrics, blood loss, and survival.If temperature predominately affected parasite fitness, then elevated temperature would cause similar directional effects on parasite abundance across species. If temperature has different effects on hosts, then parasite abundance would differ in response to elevated temperature across host species.In contrast to previous years, we found that bluebird nests had half as many parasites as compared to swallow nests. Elevated temperature affected parasite abundance differently in each host species. Swallows from heated nests had fewer parasites compared to non-heated nests, suggesting that they were more resistant to the parasites. Interestingly, swallows from heated nests were also more tolerant to the effects of parasites than controls. In contrast, bluebirds from heated nests had more parasites and lower body mass compared to controls, suggesting that they lost tolerance, and resistance, to the parasites.Our results suggest that a changing climate could have complex net effects on host-parasite interactions, including on host defenses, with implications for host health and parasite survival.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. Experimentally increased nest temperature affects body temperature, growth and apparent survival in blue tit nestlings;Journal of Avian Biology,2017

2. The effects of nestbox thermal environment on fledging success and haematocrit in Tree Swallows;Avian Biology Research,2013

3. Influence of Environmental Temperatures on the Serologic Responses of Broiler Chickens to Inactivated and Viable Newcastle Disease Vaccines

4. Studies on the life history of some species of Protocalliphora (Diptera: Calliphoridae)

5. The external parasites of birds: A review;The Wilson Bulletin,1951

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3