Genetic determinants of chromatin reveal prostate cancer risk mediated by context-dependent gene regulation

Author:

Baca Sylvan C.,Singler Cassandra,Zacharia Soumya,Seo Ji-Heui,Morova Tunc,Hach Faraz,Ding Yi,Schwarz Tommer,Huang Chia-Chi Flora,Kalita Cynthia,Groha Stefan,Pomerantz Mark M.,Wang Victoria,Linder Simon,Sweeney Christopher J.,Zwart Wilbert,Lack Nathan A.,Pasaniuc Bogdan,Takeda David Y.,Gusev Alexander,Freedman Matthew L.

Abstract

AbstractMethods that link genetic variation to steady-state gene expression levels, such as expression quantitative trait loci (eQTLs), are widely used to functionally annotate trait-associated variants, but they are limited in identifying context-dependent effects on transcription. To address this challenge, we developed the cistrome-wide association study (CWAS), a framework for nominating variants that impact traits through their effects on chromatin state. CWAS associates the genetic determinants of cistromes (e.g., the genome-wide profiles of transcription factor binding sites or histone modifications) with traits using summary statistics from genome-wide association studies (GWAS). We performed CWASs of prostate cancer and androgen-related traits, using a reference panel of 307 prostate cistromes from 165 individuals. CWAS nominated susceptibility regulatory elements or androgen receptor (AR) binding sites at 52 out of 98 known prostate cancer GWAS loci and implicated an additional 17 novel loci. We functionally validated a subset of our results using CRISPRi and in vitro reporter assays. At 28 of the 52 risk loci, CWAS identified regulatory mechanisms that are not observable via eQTLs, implicating genes with complex or context-specific regulation that are overlooked by current approaches that relying on steady-state transcript measurements. CWAS genes include transcription factors that govern prostate development such as NKX3-1, HOXB13, GATA2, and KLF5. Moreover, CWAS boosts discovery power in modestly sized GWAS, identifying novel genetic associations mediated through AR binding for androgen-related phenotypes, including resistance to prostate cancer therapy. CWAS is a powerful and biologically interpretable paradigm for studying variants that influence traits by affecting context-dependent transcriptional regulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3