Soils and sediments host novel archaea with divergent monooxygenases implicated in ammonia oxidation

Author:

Diamond SpencerORCID,Lavy AdiORCID,Crits-Christoph Alexander,Carnevali Paula B. MatheusORCID,Sharrar Allison,Williams Kenneth H.ORCID,Banfield Jillian F.ORCID

Abstract

ABSTRACTCopper membrane monooxygenases (CuMMOs) play critical roles in the global carbon and nitrogen cycles. Organisms harboring these enzymes perform the first, and rate limiting, step in aerobic oxidation of ammonia, methane, or other simple hydrocarbons. Within archaea, only organisms in the order Nitrososphaerales (Thaumarchaeota) encode CuMMOs, which function exclusively as ammonia monooxygenases. From grassland and hillslope soils and aquifer sediments, we identified 20 genomes from distinct archaeal species encoding divergent CuMMO sequences. These archaea are phylogenetically clustered in a previously unnamed Thermoplasmatota order, herein named the Ca. Angelarcheales. The CuMMO proteins in Ca. Angelarcheales are more similar in structure to those in ammonia-oxidizing archaea than those of bacteria, and they contain all functional residues required for activity. Similarly to the Nitrososphaerales, Ca. Angelarcheales genomes are significantly enriched in blue copper proteins (BCPs) relative to sibling lineages, including plastocyanin-like electron carriers and divergent nitrite reductase-like (nirK) 2-domain cupredoxin proteins co-located with electron transport machinery. Angelarcheales do not have identifiable genes for methanol oxidation or carbon fixation, encode significant capacity for peptide/amino acid uptake and degradation, and share numerous electron transport mechanisms with the Nitrososphaerales. In the studied soils and sediments Ca. Angelarcheales were at least as abundant as ammonia-oxidizing Nitrososphaerales. Thus, we predict that Angelarcheales live a mixotrophic lifestyle based on oxidation of ammonia liberated from peptide and amino acid degradation. This work expands the known diversity of Thermoplasmatota and of CuMMO enzymes in archaea and suggests that these organisms are important and previously unaccounted for contributors to nitrogen cycling.

Publisher

Cold Spring Harbor Laboratory

Reference68 articles.

1. Evolutionary History of Copper Membrane Monooxygenases;Frontiers in microbiology,2018

2. Hydrocarbon monooxygenase in Mycobacterium: recombinant expression of a member of the ammonia monooxygenase superfamily;The ISME Journal,2011

3. Ammonia oxidation: Ecology, physiology, biochemistry and why they must all come together;FEMS Microbiology Letters,2018

4. Physiology and Diversity of Ammonia-Oxidizing Archaea

5. THE REGULATION OF METHANE OXIDATION IN SOIL

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3