Polymorphisms and gene expression in the almond IGT family are not correlated to variability in growth habit in major commercial almond cultivars

Author:

Montesinos ÁlvaroORCID,Dardick Chris,Rubio-Cabetas María José,Grimplet JérômeORCID

Abstract

AbstractAlmond breeding programs aimed at selecting cultivars adapted to intensive orchards have recently focused on the optimization of tree architecture. This multifactorial trait is defined by numerous components controlled by processes such as hormonal responses, gravitropism and light perception. Gravitropism sensing is crucial to control the branch angle and therefore, the tree habit. A gene family, denominated IGT family after a share conserved domain, has been described as involved in the regulation of branch angle in several species, including rice and Arabidopsis, and even in fruit trees like peach. Here we identified six members of this family in almond: LAZY1, LAZY2, TAC1, DRO1, DRO2, IGT-like. After analyzing their protein sequences in forty-one almond cultivars and wild species, little variability was found, pointing a high degree of conservation in this family. Gene expression was analyzed in fourteen cultivars of agronomical interest comprising diverse tree habit phenotypes. Only LAZY1, LAZY2 and TAC1 were expressed in almond shoot tips during the growing season. No relation was established between the expression profile of these genes and the tree habit. However, some insight has been gained in how LAZY1 and LAZY2 are regulated, identifying the IPA1 almond homologues and other transcription factors involved in hormonal responses as regulators of their expression. Besides, we have found various polymorphisms that could not be discarded as involved in a potential polygenic origin of regulation of architectural phenotypes. Therefore, we have established that unlike many species, IGT family genes do not play a critical role in the control of tree habit in currently commercialized almond cultivars, with other gene families contributing to the variability of these traits.

Publisher

Cold Spring Harbor Laboratory

Reference109 articles.

1. Retos y perspectivas de los nuevos cultivares y patrones de almendro para un cultivo sostenible;ITEA Inf Tec Econ Agrar,2009

2. Costes E , Regnard JL . Analizing Fruit Tree Architecture. Horticultural Reviews. 2006; 32.

3. Molecular basis of angiosperm tree architecture

4. Perennial Growth, Form and Architecture of Angiosperm Trees

5. Branching out: new insights into the genetic regulation of shoot architecture in trees

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3