Gene flow influences the genomic architecture of local adaptation in six riverine fish species

Author:

Shi YueORCID,Bouska Kristen L.ORCID,McKinney Garrett J.ORCID,Dokai William,Bartels Andrew,McPhee Megan V.ORCID,Larson Wesley A.ORCID

Abstract

AbstractUnderstanding how gene flow influences adaptive divergence is important for predicting adaptive responses. Theoretical studies suggest that when gene flow is high, clustering of adaptive genes in fewer genomic regions would protect adaptive alleles from among-population recombination and thus be selected for, but few studies have tested this hypothesis with empirical data. Here, we used RADseq to generate genomic data for six fish species with contrasting life histories from six reaches of the Upper Mississippi River System, USA. We then conducted genome scans for genomic islands of divergence to examine the distribution of adaptive loci and investigated whether these loci were found in inversions. We found that gene flow varied among species, and adaptive loci were clustered more tightly in species with higher gene flow. For example, the two species with the highest overall FST (0.03 - 0.07) and therefore lowest gene flow showed little evidence of clusters of adaptive loci, with adaptive loci spread uniformly across the genome. In contrast, nearly all adaptive loci in the species with the lowest FST (0.0004) were found in a single large putative inversion. Two other species with intermediate gene flow (FST ~ 0.004) also showed clustered genomic architectures, with most islands of divergence clustered on a few chromosomes. These results provide important empirical evidence to support the hypothesis that increasingly clustered architectures of local adaptation are associated with high gene flow. Our study utilized a unique system with species spanning a large gradient of life histories to highlight the importance of gene flow in shaping adaptive divergence.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3