Kaposi’s Sarcoma-associated Herpesvirus vFLIP Promotes MEndT to Generate Hybrid M/E State for Tumorigenesis

Author:

Chen Weikang,Ding Yao,Lu Zhengzhou,Wang Yan,Yuan YanORCID

Abstract

AbstractKaposi’s sarcoma (KS) is an angioproliferative and invasive tumor caused by Kaposi’s sarcoma-associated herpesvirus (KSHV). The cellular origin of KS tumor cells remains contentious. Recently, evidence has accrued indicating that KS may arise from KSHV-infected mesenchymal stem cells (MSCs) through mesenchymal-to-endothelial transition (MEndT), but the transformation process has been largely unknown. In this study, we investigated the KSHV-mediated MEndT process and found that KSHV infection rendered MSCs incomplete endothelial lineage differentiation and formed hybrid mesenchymal/endothelial (M/E) state cells characterized by simultaneous expression of mesenchymal markers PDGFRA/Nestin and endothelial markers PDPN/CD31. The hybrid M/E cells have acquired high tumorigenic properties in vitro and the potential to form KS-like tumors after transplanted in mice under renal capsules. These results faithfully recapitulate Kaposi’s sarcoma where proliferating KS spindle-shaped cells and the cells that line KS-specific aberrant vessels were also found to exhibit a hybrid M/E state. Furthermore, the genetic analysis identified KSHV-encoded FLICE inhibitory protein (vFLIP) as a crucial regulator controlling KSHV-induced MEndT and generating hybrid M/E state cells for tumorigenesis. Overall, KSHV-mediated MEndT that transforms MSCs to tumorigenic hybrid M/E state cells driven by vFLIP is an essential event in Kaposi’s sarcomagenesis.Author SummaryKaposi’s sarcoma manifests as multifocal lesions with spindle cell proliferation, intense angiogenesis, and erythrocyte extravasation. Although the origin and true malignant nature of KS remains contentious, it is established that KSHV infection with concomitant viral oncogene expression in normal cell progenitors causes KS. The mechanism of KSHV oncogenesis could be revealed through reproduction of KS by infection of normal cells. This study reports that the KSHV infection of mesenchymal stem cells initiates mesenchymal-to-endothelial transition (MEndT) that generates mesenchymal/endothelial (M/E) hybrid state cells. The hybrid M/E cells acquired high tumorigenic properties, including tumor initiation, angiogenesis, migration, and the potential to form KS-like tumors after transplanted in mice. This finding faithfully recapitulates Kaposi’s sarcoma where proliferating KS spindle cells and the cells that line KS-specific aberrant vessels are also found to exhibit the hybrid M/E state. We also found that KSHV-encoded viral FLICE inhibitory protein (vFLIP) plays a crucial role in promoting MEndT and the generation of M/E state cells. These results provide a new layer of evidence for MSCs being the cell source of KS spindle cells and reveal novel insight into KS pathogenesis and viral tumorigenesis.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Endemic Kaposi’s Sarcoma;Cancers;2023-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3