Author:
Alibo Eziwoma,Mollaoglu Gurkan,Dhainaut Maxime,Zhao Royce,Rose Samuel,Baccarini Alessia,Parsons Ramon,Brown Brian D.
Abstract
SUMMARYIncreasing evidence indicates oncogenes and tumor suppressors not only influence cell fitness but can also control the immunophenotype of cells. Here, we examined how 34 commonly mutated genes in colorectal cancer (CRC) may influence the expression of 8 key immunomodulatory proteins. To do this, we employed a functional genomics approach utilizing Pro-Code/CRISPR libraries for high-dimensional analysis. We introduced a library of 102 Pro-Code/gRNA combinations, targeting each of the 34 genes, in CT26 cells, a CRC cell model, and measured the expression of each of the immunomodulatory proteins by CyTOF mass cytometry. Notably, cells carrying a Pro-Code/CRISPR targeting the Trp53 lost expression of the immune co-stimulatory molecule CD80. Validation confirmed that Trp53 knockout resulted in the loss of CD80 and that activation of P53, through DNA damage or stabilization, resulted in CD80 upregulation. P53 ChIP-seq identified the CD80 promoter as a direct target of P53. CD80 regulation by P53 was identified in other cells, including normal epithelial cells and macrophages. Functionally, CD80 reduction caused by P53 loss led to a reduced capacity for CRC to prime antigen-specific T cells. These studies establish CD80, a canonical co-stimulatory molecule, as a direct target of the tumor suppressor and DNA damage response gene, P53.
Publisher
Cold Spring Harbor Laboratory