Worms get the munchies: the endocannabinoid AEA induces hedonic amplification in C. elegans by modulating the activity of the AWC chemosensory neuron

Author:

Levichev AnastasiaORCID,Faumont SergeORCID,Berner Rachel Z.,Lockery Shawn R.ORCID

Abstract

AbstractThe mammalian endocannabinoid system, comprised of the endocannabinoids AEA (N-arachidonoyl-ethanolamine) and 2-AG (2-Arachidonoylglycerol), their receptors, CB1 and CB2, and their metabolic enzymes, is believed to integrate internal energy state and external food cues to modulate feeding. For example, cannabinoids can increase preference for more palatable, calorically dense food: a response called hedonic amplification, colloquially known as “the munchies.” In mammals, cannabinoids can increase sensitivity to odors and sweet tastes, which may underlie amplification. We use C. elegans, an omnivorous bacterivore, as a model in which to investigate the neurophysiology of hedonic amplification. We found that exposure to AEA increases the worms’ preference for strongly preferred (more palatable) bacteria over weakly preferred (less palatable) bacteria, mimicking hedonic amplification in mammals. Furthermore, AEA acts bidirectionally, increasing consumption of strongly preferred bacteria while decreasing consumption of weakly preferred bacteria. We also found that deletion of the putative CB1 homolog, npr-19, eliminates hedonic amplification, which can be rescued by expression of wild type npr-19 or human CB1, establishing a humanized worm for cannabinoid signaling studies. Deletion of the olfactory neuron AWC, which directs chemotaxis to food, abolishes hedonic amplification. Consistent with this finding, calcium imaging revealed that AEA bidirectionally modulates AWC activity, increasing its responses to strongly preferred food and decreasing its response for weakly preferred food. In a GFP expression analysis, we found that npr-19 is expressed in approximately 21 neuron classes but, surprisingly, not in AWC. Although AEA’s effect could be mediated by NPR-19-expressing neurons presynaptic to AWC, nearly complete elimination of fast synaptic transmission, via the mutation unc-13(e51), had no effect on modulation. Instead, it appears that AEA modulates AWC by activating one or more npr-19-expressing neurons that release a diffusible neuromodulator to which AWC is sensitive.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3