Abstract
AbstractRepurposing drugs provides a new approach to the fight against multidrug-resistant (MDR) bacteria. We have reported that three major tamoxifen metabolites, N-desmethyltamoxifen (DTAM), 4-hydroxytamoxifen (HTAM) and endoxifen (ENDX), presented bactericidal activity against Acinetobacter baumannii and Escherichia coli. Here, we aimed to analyse the activity of a mixture of the three tamoxifen metabolites against methicillin-resistant Staphylococcus epidermidis (MRSE) and Enterococcus spp.MRSE (n=17) and Enterococcus spp. (E. faecalis n=8, and E. faecium n=10) strains were used. MIC of the mixture of DTAM, HTAM and ENDX, and vancomycin were determined by microdilution assay. The bactericidal activity of the three metabolites together and vancomycin against MRSE (SE385 and SE742) and vancomycin-resistant E. faecalis (EVR1 and EVR2) strains was determined by time-kill curve assays. Finally, changes in membrane permeability of SE742 and EVR1 strains were analyzed using fluorescence assays.MIC50 and MIC90 of tamoxifen metabolites were 1 mg/L for MRSE strains and 2 mg/L for Enterococcus spp. strains. In the time-killing assays, tamoxifen metabolites mixture showed bactericidal activity at 2x and 4xMIC for MRSE (SE385 and SE742) and E. faecalis (EVR1 and EVR2) strains. This antimicrobial activity of tamoxifen metabolites paralleled an increased membrane permeability of SE385 and EVR2 strains.Altogether, these results showed that tamoxifen metabolites presented antibacterial activity against MRSE and vancomycin-resistant E. faecalis, suggesting that tamoxifen metabolites might increase the arsenal of drugs treatment against these bacterial pathogens.
Publisher
Cold Spring Harbor Laboratory