The effect of magnesium on calcium binding to cardiac troponin C related hypertrophic cardiomyopathy mutants

Author:

Rayani KavehORCID,Hantz Eric,Haji-Ghassemi Omid,Li Alison Yueh,Spuches Anne MarieORCID,Van Petegem Filip,Solaro R John,Lindert SteffenORCID,Tibbits Glen FORCID

Abstract

AbstractCardiac troponin C (cTnC) is the calcium (Ca2+) sensing component of the troponin complex. Binding of Ca2+ to cTnC triggers a cascade of myofilament conformational changes that culminate in force production. Mutations in cTnC linked to hypertrophic myocardial myopathy (HCM) induce a a greater degree and duration of Ca2+ binding, which may underly the hypertrophic phenotype. Recent evidence from our laboratories demonstrated novel modifications of cTnC Ca2+ binding by cellular magnesium (Mg2+) that we hypothesize may be of significance in promoting HCM.Regulation of contraction has long been thought to occur exclusively through Ca2+ binding to site II of cTnC. However, abundant cellular Mg2+ is a potential competitor for binding to the same sites; work by several groups also suggests this is possible. We have used isothermal titration calorimetry (ITC) to explore the thermodynamic properties associated with the interaction between Ca2+/Mg2+ and site II of cTnC; these experiments demonstrated that physiological concentrations of Mg2+ may compete with Ca2+ to bind site II of cTnC.In experiments reported here, we studied a series of mutations in cTnC thought to be causal in HCM. Three mutants (A8V, L29Q, and A31S) slightly elevated the affinity for both Ca2+ and Mg2+, whereas other mutants (L48Q, Q50R, and C84Y), that are closer to the C-terminal domain and surrounding the EF hand binding motif of site II had a more significant effect on affinity and the thermodynamics of the binding interaction.To the best of our knowledge, this work is the first to explore the role of Mg2+ in modifying the Ca2+ affinity ofcTnC mutations linked to HCM. Our results indicate a physiologically significant role for cellular Mg2+ at baseline conditions and when elevated on the control of the dynamics of contraction by modifications in the Ca2+ binding properties of cTnC.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3