Detection of fusion transcripts and their genomic breakpoints from RNA sequencing data

Author:

Hoogstrate YouriORCID,Komor Malgorzata A.,Böttcher René,van Riet Job,van de Werken Harmen J. G.,van Lieshout Stef,Hoffmann Ralf,van den Broek Evert,Bolijn Anne S.,Dits Natasja,Sie Daoud,van der Meer David,Pepers Floor,Bangma Chris H.,van Leenders Geert J. L. H.,Smid Marcel,French PimORCID,Martens John W.M.ORCID,van Workum Wilbert,van der Spek Peter J.ORCID,Janssen Bart,Caldenhoven Eric,Rausch Christian,de Jong Mark,Stubbs Andrew P.,Meijer Gerrit A.,Fijneman Remond J.A.,Jenster Guido

Abstract

AbstractSpliced fusion-transcripts are typically identified by RNA-seq without elucidating the causal genomic breakpoints. However, non poly(A)-enriched RNA-seq contains large proportions of intronic reads spanning also genomic breakpoints. Using 1.274 RNA-seq samples, we investigated what additional information is embedded in non poly(A)-enriched RNA-seq data. Here, we present our novel, graph-based, Dr. Disco algorithm that makes use of both intronic and exonic RNA-seq reads to identify not only fusion transcripts but also genomic breakpoints in gene but also in intergenic regions. Dr. Disco identified TMPRSS2-ERG fusions with genomic breakpoints and other transcribed rearrangements from multiple RNA-sequencing cohorts. In breast cancer and glioma samples Dr. Disco identified rearrangement hotspots near CCND1 and MDM2 and could directly associate this with increased expression. A comparison with matched DNA-sequencing revealed that most genomic breakpoints are not, or minimally, transcribed while also revealing highly expressed translocations missed by DNA-seq. By using the full potential of non poly(A)-enriched RNA-seq data, Dr. Disco can reliably identify expressed genomic breakpoints and their transcriptional effects.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3