Single cell transcriptomics and developmental trajectories of murine cranial neural crest cell fate determination and cell cycle progression

Author:

Ji Yu,Zhang Shuwen,Reynolds Kurt,Gu Ran,McMahon Moira,Islam Mohammad,Liu Yue,Imai Taylor,Donham Rebecca,Zhao Huan,Xu YingORCID,Burkart-Waco Diana,Zhou Chengji J.ORCID

Abstract

AbstractCranial neural crest (NC) cells migrate long distances to populate the future craniofacial regions and give rise to various tissues, including facial cartilage, bones, connective tissues, and cranial nerves. However, the mechanism that drives the fate determination of cranial NC cells remains unclear. Using single-cell RNA sequencing combined genetic fate mapping, we reconstructed developmental trajectories of cranial NC cells, and traced their differentiation in mouse embryos. We identified four major cranial NC cell lineages at different status: pre-epithelial-mesenchymal transition, early migration, NC-derived mesenchymal cells, and neural lineage cells from embryonic days 9.5 to 12.5. During migration, the first cell fate determination separates cranial sensory ganglia, the second generates mesenchymal progenitors, and the third separates other neural lineage cells. We then focused on the early facial prominences that appear to be built by undifferentiated, fast-dividing NC cells that possess similar transcriptomic landscapes, which could be the drive for the facial developmental robustness. The post-migratory cranial NC cells exit the cell cycle around embryonic day 11.5 after facial shaping is completed and initiates further fate determination and differentiation processes. Our results demonstrate the transcriptomic landscapes during dynamic cell fate determination and cell cycle progression of cranial NC lineage cells and also suggest that the transcriptomic regulation of the balance between proliferation and differentiation of the post-migratory cranial NC cells can be a key for building up unique facial structures in vertebrates.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3