A novel gene-by-environment quantitative trait locus on mouse chromosome 15 underlies susceptibility to acute ozone-induced lung injury

Author:

Tovar AdelaideORCID,Smith Gregory J.ORCID,Thomas Joseph M.,McFadden Kathryn M.,Kelada Samir N. P.ORCID

Abstract

AbstractRespiratory toxicity caused by the common urban air pollutant ozone (O3) varies considerably within the human population and across inbred mouse strains, suggestive of gene-environment interactions (GxE). Though previous studies genetic mapping studies using classical inbred strains have identified several and quantitative trait locus (QTL) and candidate genes underlying responses to O3 exposure, precise mechanisms of susceptibility remain incompletely described. We sought to expand our understanding of the genetic architecture of O3 responsiveness using the Collaborative Cross (CC) recombinant inbred mouse panel, which contains more genetic diversity than previous inbred strain panels. We evaluated hallmark O3-induced respiratory phenotypes in 56 CC strains after exposure to filtered air or 2 ppm O3, and performed focused genetic analysis of variation in lung injury as measured by the total bronchoalveolar lavage protein concentration. Because animals were exposed in sex- and batch-matched pairs, we defined a protein response phenotype as the difference in lavage protein between the O3- and FA-exposed animal within a pair. The protein response phenotype was heritable, and QTL mapping revealed two novel loci on Chromosomes 10 (peak: 26.2 Mb; 80% CI: 24.6-43.6 Mb) and 15 (peak: 47.1 Mb; 80% CI: 40.2-54.9 Mb), the latter surpassing the 95% significance threshold. At the Chr. 15 locus, C57BL/6J and CAST/EiJ founder haplotypes were associated with higher protein responses compared to all other CC founder strain haplotypes. Using additional statistical analysis and high-density SNP data, we delimited the Chr. 15 QTL to a ∼2 Mb region containing 21 genes (10 protein coding). Using a weight of evidence approach that incorporated candidate variant analysis, functional annotations, and publicly available lung gene expression data, we nominated three candidate genes (Oxr1, Rspo2, and Angpt1). In summary, we have shown that O3-induced lung injury is modulated by genetic variation and demonstrated the value of the CC for uncovering and dissecting gene-environment interactions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3