Abstract
SummaryFall armyworm (Spodoptera frugiperda) is an invasive lepidopteran pest with strong feeding preference towards maize (Zea mays). Its success on maize is facilitated by a suite of specialized detoxification and manipulation mechanisms that curtail host plant defense responses.In this study, we identified a Chinese maize inbred line Xi502 that was able to mount effective defense in response to fall armyworm attack. Comparative transcriptomics analyses, phytohormonal measurements, and targeted benzoxazinoid quantification consistently demonstrate significant inducible defense responses in Xi502, but not in the susceptible reference inbred line B73.In 24 hours, fall armyworm larvae feeding on B73 showed accelerated maturation-oriented transcriptomic responses and more changes in detoxification gene expression compared to their Xi502-fed sibling. Interestingly, oral secretions collected from larvae fed on B73 and Xi502 leaves demonstrated distinct elicitation activity when applied on either host genotypes, suggesting that variation in both insect oral secretion composition and host plant alleles could influence plant defense response.These results revealed host plant adaptation towards counter-defense mechanisms in a specialist insect herbivore, adding yet another layer to the evolutionary arms race between maize and fall armyworm. This could facilitate future investigation into the molecular mechanisms in this globally important crop-pest interaction system.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献