Interplay between cell proliferation and recruitment controls the duration of growth and final size of the Drosophila wing

Author:

Diaz-Torres Elizabeth,Muñoz-Nava Luis Manuel,Nahmad Marcos

Abstract

AbstractHow organs robustly attain a final size despite perturbations in cell growth and proliferation rates is a fundamental question in developmental biology. Since organ growth is an exponential process driven mainly by cell proliferation, even small variations in cell proliferation rates, when integrated over a relatively long time, will lead to large differences in size, unless intrinsic control mechanisms compensate for these variations. Here we use a mathematical model to consider the hypothesis that in the developing wing of Drosophila, cell recruitment, a process in which undifferentiated neighboring cells are incorporated into the wing primordium, determines the time in which growth is arrested in this system. Under this assumption, our model shows that perturbations in proliferation rates of wing-committed cells are compensated by an inversely proportional duration of growth. This mechanism ensures that the final size of the wing is robust in a range of cell proliferation rates. Furthermore, we predict that growth control is lost when fluctuations in cell proliferation affects both wing-committed and recruitable cells. Our model suggests that cell recruitment may act as a temporal controller of growth to buffer fluctuations in cell proliferation rates, offering a solution to a long-standing problem in the field.Graphical abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3