‘Resistance is futile’: Weaker selection for resistance during larger epidemics further increases prevalence and depresses host density

Author:

Walsman Jason C.ORCID,Duffy Meghan A.,Cáceres Carla E.,Hall Spencer R.

Abstract

AbstractWhat determines how much resistance hosts evolve? One might intuit that hosts evolve higher resistance when parasites are more abundant. However, the opposite pattern can arise due to costs of resistance. Here we illustrate with mathematical, experimental, and field approaches how ecological context can increase parasite abundance and select for lower resistance. ‘Resistance is futile’ when all host genotypes become sufficiently infected. To make this argument, we first analyzed an eco-evolutionary model of parasites, hosts, and hosts’ resources. We determined eco-evolutionary outcomes for resistance (mathematically, transmission rate) and densities along gradients that drive epidemic size. When epidemic drivers are high, hosts evolve lower resistance, amplifying epidemics and decreasing host density. Experimental mesocosms qualitatively agreed. In the experiment, higher supply of nutrients drove larger epidemics of survival-reducing fungal parasites. Evolving zooplankton hosts were less resistant at high nutrients than at low. Less resistance, in turn, was associated with higher infection prevalence and lower host density. We also analyzed the size of naturally occurring epidemics, finding a broad, bimodal distribution of epidemic sizes consistent with the eco-evolutionary model. Together, our three approaches supported predictions that high epidemic drivers lead to evolution of lower resistance which drives higher prevalence and lower host density.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The evolution of age-specific resistance to infectious disease;Proceedings of the Royal Society B: Biological Sciences;2023-01-25

2. The evolution of age-specific resistance to infectious disease;2022-10-07

3. Predation shifts coevolution toward higher host contact rate and parasite virulence;Proceedings of the Royal Society B: Biological Sciences;2022-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3