The Role of ATP in the RNA Translocation Mechanism of SARS-CoV-2 NSP13 Helicase

Author:

Weber Ryan,McCullagh MartinORCID

Abstract

AbstractThe COVID-19 pandemic has demonstrated the need to develop potent and transferable therapeutics to treat coronavirus infections. Numerous antiviral targets are being investigated, but non-structural protein 13 (nsp13) stands out as a highly conserved and yet under studied target. Nsp13 is a superfamily 1 (SF1) helicase that translocates along and unwinds viral RNA in an ATP dependent manner. Currently, there are no available structures of nsp13 from SARS-CoV-1 or SARS-CoV-2 with either ATP or RNA bound presenting a significant hurdle to the rational design of therapeutics. To address this knowledge gap, we have built models of SARS-CoV-2 nsp13 in Apo, ATP, ssRNA and ssRNA+ATP substrate states. Using 30 μs of Gaussian accelerated molecular dynamics simulation (at least 6 μs per substrate state), these models were confirmed to maintain substrate binding poses that are similar to other SF1 helicases. A gaussian mixture model and linear discriminant analysis structural clustering protocol was used to identify key aspects of the ATP-dependent RNA translocation mechanism. Namely, four RNA-nsp13 structures are identified that exhibit ATP-dependent populations and support the inch-worm mechanism for translocation. These four states are characterized by different RNA-binding poses for motifs Ia, IV and V and suggest a powerstroke–like motion of domain 2A relative to domain 1A. This structural and mechanistic insight of nsp13 RNA translocation presents novel targets for the further development of antivirals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3