Abstract
ABSTRACTA marker for the severeness and disease progress of COVID-19 is overexpression of serum amyloid A (SAA) to levels that in other diseases are associated with a risk for SAA amyloidosis. In order to understand whether SAA amyloidosis could also be a long-term risk of SARS-COV-2 infections we have used long all-atom molecular dynamic simulations to study the effect of a SARS-COV-2 protein segment on SAA amyloid formation. Sampling over 40 µs we find that presence of the nine-residue segment SK9, located at the C-terminus of the Envelope protein, increases the propensity for SAA fibril formation by three mechanisms: it reduces the stability of the lipid-transporting hexamer shifting the equilibrium toward monomers, it increases the frequency of aggregation-prone configurations in the resulting chains, and it raises the stability of SAA fibrils. Our results therefore suggest that SAA amyloidosis and related pathologies may be a long-term risk of SARS-COV-2 infections.
Publisher
Cold Spring Harbor Laboratory
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献