Hybridization and range expansion in tamarisk beetles (Diorhabda spp.) introduced to North America for classical biological control

Author:

Stahlke Amanda R.ORCID,Bitume Ellyn V.,Ozsoy A. Zeynep,Bean Dan W.,Veillet Anne,Clark Meaghan I.,Clark Eliza I.,Moran Patrick,Hufbauer Ruth A.,Hohenlohe Paul A.

Abstract

AbstractWith the global rise of human-mediated translocations and invasions, it is critical to understand the genomic consequences of hybridization and mechanisms of range expansion. Conventional wisdom is that high genetic drift and loss of genetic diversity due to repeated founder effects will constrain introduced species. However, reduced genetic variation can be countered by behavioral aspects and admixture with other distinct populations. As planned invasions, classical biological control (biocontrol) agents present important opportunities to understand the mechanisms of establishment and spread in a novel environment. The ability of biocontrol agents to spread and adapt, and their effects on local ecosystems, depends on genomic variation and the consequences of admixture in novel environments. Here we use a biocontrol system to examine the genome-wide outcomes of introduction, spread, and hybridization in four cryptic species of a biocontrol agent, the tamarisk beetle (Diorhabda carinata, D. carinulata, D. elongata, and D. sublineata), introduced from six localities across Eurasia to control the invasive shrub tamarisk (Tamarix spp.) in western North America. We assembled a de novo draft reference genome and applied RADseq to over 500 individuals from laboratory cultures, the native ranges, and across the introduced range. Despite evidence of a substantial genetic bottleneck among D. carinulata in N. America, populations continue to establish and spread, possibly due to aggregation behavior. We found that D. carinata, D. elongata, and D. sublineata hybridize in the field to varying extents, with D. carinata x D. sublineata hybrids being the most abundant. Genetic diversity was greater at sites with hybrids, highlighting potential for increased ability to adapt and expand. Our results demonstrate the complex patterns of genomic variation that can result from introduction of multiple ecotypes or species for biocontrol, and the importance of understanding them to predict and manage the effects of biocontrol agents in novel ecosystems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3