A statistical model of COVID-19 testing in populations: effects of sampling bias and testing errors

Author:

Böttcher Lucas,D’Orsogna Maria R.,Chou Tom

Abstract

We develop a statistical model for the testing of disease prevalence in a population. The model assumes a binary test result, positive or negative, but allows for biases in sample selection and both type I (false positive) and type II (false negative) testing errors. Our model also incorporates multiple test types and is able to distinguish between retesting and exclusion after testing. Our quantitative framework allows us to directly interpret testing results as a function of errors and biases. By applying our testing model to COVID-19 testing data and actual case data from specific jurisdictions, we are able to estimate and provide uncertainty quantification of indices that are crucial in a pandemic, such as disease prevalence and fatality ratios.

Publisher

Cold Spring Harbor Laboratory

Reference26 articles.

1. CDC, “Overview of Testing for SARS-CoV-2 (COVID-19),” https://www.cdc.gov/coronavirus/2019-ncov/hcp/testing-overview.html, 2020, accessed: 2021-01-26.

2. M. R. Tom and M. J. Mina , “To interpret the SARS-CoV-2 test, consider the cycle threshold value,” pp. 2252–2254, 2020.

3. A. Mandavilli , “Your coronavirus test is positive. Maybe it shouldn’t be,” The New York Times, vol. 17, 2020.

4. U.S. Food and Drug Administration, “EUA authorized serology test performance,” https://www.fda.gov/medical-devices/emergency-situations-medical-devices/eua-authorized-serology-test-performance, 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3