Growth and eGFP-production of CHO-K1 suspension cells cultivated from single-cell to lab-scale

Author:

Schmitz JulianORCID,Hertel OliverORCID,Yermakov Boris,Noll ThomasORCID,Grünberger AlexanderORCID

Abstract

AbstractScaling down bioproduction processes became a major driving force for more accelerated and efficient process development over the last decades. Especially expensive and time-consuming processes like the production of biopharmaceuticals with mammalian cell lines benefit clearly from miniaturisation, due to higher parallelisation and increased insights while at the same time decreasing experimental time and costs. Lately, novel microfluidic methods have been developed, especially microfluidic single-cell cultivation (MSCC) devices proofed to be valuable to miniaturise the cultivation of mammalian cells. So far growth characteristics of microfluidic cultivated cell lines were not systematically compared to larger cultivation scales, however validation of a miniaturisation tool against initial cultivation scales is mandatory to proof its applicability for bioprocess development. Here, we systematically investigate growth, morphology, and eGFP-production of CHO-K1 cells in different cultivation scales including microfluidic chip (230 nL), shake flask (60 mL), and lab-scale bioreactor (1.5 L). Our study shows a high comparability regarding growth rates, cellular diameters, and eGFP production which proofs the feasibility of MSCC as miniaturised cultivation tool for mammalian cell culture. In addition, we demonstrate that MSCC allows insights into cellular heterogeneity and single-cell dynamics concerning growth and production behaviour which, when occurring in bioproduction processes, might severely affect process robustness. Eventually, by providing insights into cellular heterogeneity, MSCC has the potential to be applied as a novel and powerful tool in the context of cell line development and bioprocesses implementation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3