Sorption of neuropsychopharmaca in microfluidic materials for in-vitro studies

Author:

Winkler Thomas E.ORCID,Herland AnnaORCID

Abstract

ABSTRACTSorption (i.e., ad- & ab-sorption) of small-molecule compounds to polydimethylsiloxane (PDMS) is widely acknowledged. However, studies to date have largely been conducted under atypical conditions for microfluidic applications (lack of perfusion, lack of biological fluids); especially considering the biological studies such as Organs-on-Chips where small-molecule sorption poses the largest concern. Here, we present the first study of small-molecule sorption under relevant conditions for microphysiological systems, focusing on a standard geometry for biological barrier studies that find application in pharmacokinetics. We specifically assess the sorption of a compound panel including 15 neuropsychopharmaca at in-vivo concentration levels. We consider devices constructed from PDMS as well as two material alternatives (off-stoichiometry thiol-ene-epoxy, or tape/polycarbonate laminates). Moreover, we study the much-neglected impact of peristaltic pump tubing, an essential component of the recirculating systems required to achieve in-vivo-like perfusion shear stresses. We find that choice of device material does not significantly impact sorption behavior in our barrier-on-chip-type system. Our PDMS observations in particular suggest that excessive compound sorption observed in prior studies is not sufficiently described by compound hydrophobicity or other suggested predictors. Critically, we show that sorption by peristaltic tubing, including the commonly-utilized PharMed BPT, dominates over device sorption even on an area-normalized basis, let alone at the typically much larger tubing surface areas. Our findings highlight the importance of validating compound dosages in Organ-on-Chip studies, as well as the need for considering tubing materials with equal or higher care than device materials.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3