Late-in-life treadmill-training rejuvenates autophagy, protein aggregate clearance, and function in mouse hearts

Author:

Cho Jae Min,Ly Kellsey,Ramous Caroline,Thompson Lauren,Hansen Michele,Mattera Maria Sara de Lima Coutinho,Pires Karla Maria,Ferhat Maroua,Whitehead Kevin JORCID,Carter Kandis,Buffolo Márcio,Ghosh Rajeshwary,Park Seul-Ki,Boudina Sihem,Symons J David

Abstract

ABSTRACT AND KEYWORDSThere is evidence for a progressive decline of protein quality control mechanisms during the process of cardiac aging. This enables the accumulation of protein aggregates and damaged organelles that contribute to age-associated cardiac dysfunction. Macroautophagy (referred to as autophagy) is the process by which post-mitotic cells such as cardiomyocytes clear defective proteins and organelles. We hypothesized that late-in-life exercise training improves autophagy, protein aggregate clearance, and function that is otherwise dysregulated in hearts from old vs adult mice. As expected, 24-month old male C57BL/6J mice (old) exhibited : (i) repressed autophagosome formation and protein aggregate accumulation in the heart; (ii) systolic and diastolic dysfunction; and (iii) reduced exercise capacity, vs. 8-month old (adult) mice (all p< .05). Separate cohorts of 21 month old mice completed a 3-month progressive resistance treadmill-running program (old-ETR) that improved (all < .05) : (i) body composition; (ii) exercise capacity; and (iii) soleus muscle citrate synthase activity, vs. age-matched mice that did not train (old-SED). Importantly, (iv) protein expression of autophagy markers indicated trafficking of the autophagosome to the lysosome increased, (v) protein aggregate clearance improved, and (vi) overall function was enhanced (all p<0.05), in hearts from old-ETR vs. old- SED mice. Dietary maneuvers and pharmacological interventions shown to elevate basal autophagy are reported to mitigate / reverse age-associated cardiac dysfunction. Here we show the first evidence that a physiological intervention initiated late-in-life improves autophagic flux, protein aggregate clearance, and overall function in mouse hearts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3