SAMase of bacteriophage T3 inactivates E. coli’s methionine S-adenosyltransferase by forming hetero-polymers

Author:

Simon-Baram Hadas,Kleiner Daniel,Shmulevich Fannia,Zarivach Raz,Zalk Ran,Tang Huayuan,Ding Feng,Bershtein ShimonORCID

Abstract

ABSTRACTS-adenosylmethionine lyase (SAMase) of bacteriophage T3 degrades the intracellular SAM pools of the host E. coli cells, thus inactivating a crucial metabolite involved in plethora of cellular functions, including DNA methylation. SAMase is the first viral protein expressed upon infection and its activity prevents methylation of the T3 genome. Maintenance of the phage genome in a fully unmethylated state has a profound effect on the infection strategy — it allows T3 to shift from a lytic infection under normal growth conditions to a transient lysogenic infection under glucose starvation. Using single-particle Cryo-EM and biochemical assays, we demonstrate that SAMase performs its function by not only degrading SAM, but also by interacting with and efficiently inhibiting the host’s methionine S-adenosyltransferase (MAT) — the enzyme that produces SAM. Specifically, SAMase triggers open-ended head-to-tail assembly of E. coli MAT into an unusual linear filamentous structure in which adjacent MAT tetramers are joined together by two SAMase dimers. Molecular dynamics simulations together with normal mode analyses suggest that the entrapment of MAT tetramers within filaments leads to an allosteric inhibition of MAT activity due to a shift to low-frequency high-amplitude active site-deforming modes. The amplification of uncorrelated motions between active site residues weakens MAT’s ability to withhold substrates, explaining the observed loss of function. We propose that the dual function of SAMase as an enzyme that degrades SAM and as an inhibitor of MAT activity has emerged to achieve an efficient depletion of the intracellular SAM pools.IMPORTANCESelf-assembly of enzymes into filamentous structures in response to specific metabolic cues has recently emerged as a widespread strategy of metabolic regulation. In many instances filamentation of metabolic enzymes occurs in response to starvation and leads to functional inactivation. Here, we report that bacteriophage T3 modulates the metabolism of the host E. coli cells by recruiting a similar strategy — silencing a central metabolic enzyme by subjecting it to phage-mediated polymerization. This observation points to an intriguing possibility that virus-induced polymerization of the host metabolic enzymes might be a common mechanism implemented by viruses to metabolically reprogram and subdue infected cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3