Plant cell wall integrity maintenance and pattern-triggered immunity modulate jointly plant stress responses in Arabidopsis thaliana

Author:

Engelsdorf Timo,Gigli-Bisceglia Nora,Veerabagu Manikandan,McKenna Joseph F.,Augstein Frauke,van der Does Dieuwertje,Zipfel Cyril,Hamann Thorsten

Abstract

AbstractPlant cells are surrounded by walls, which must often meet opposing functional requirements during plant growth and defense. The cells meet them by modifying wall structure and composition in a tightly controlled and adaptive manner. The modifications seem to be mediated by a dedicated cell wall integrity (CWI) maintenance mechanism. Currently the mode of action of the mechanism is not understood and it is unclear how its activity is coordinated with established plant defense signaling. We investigated responses to induced cell wall damage (CWD) impairing CWI and the underlying mechanism in Arabidopsis thaliana. Interestingly inhibitor- and enzyme-derived CWD induced similar, turgor-sensitive stress responses. Genetic analysis showed that the receptor-like kinase (RLK) FEI2 and the mechano-sensitive, plasma membrane-localized Ca2+- channel MCA1 function downstream of the THE1 RLK in CWD perception. Phenotypic clustering with 27 genotypes identified a core group of RLKs and ion channels, required for activation of CWD responses. By contrast, the responses were repressed by pattern-triggered immune (PTI) signaling components including PEPR1 and 2, the receptors for the immune signaling peptide AtPep1. Interestingly AtPep1 application repressed CWD-induced phytohormone accumulation in a PEPR1/2-dependent manner. These results suggest that PTI suppresses CWD-induced defense responses through elicitor peptide-mediated signaling during defense response activation. If PTI is impaired, the suppression of CWD-induced responses is alleviated, thus compensating for defective PTI.Significance statementStress resistance and plant growth determine food crop yield and efficiency of bioenergy production from ligno-cellulosic biomass. Plant cell walls are essential elements of the biological processes, therefore functional integrity of the cell walls must be maintained throughout. Here we investigate the plant cell wall integrity maintenance mechanism. We characterize its mode of action, identify essential signaling components and show that the AtPep1 signaling peptide apparently coordinates pattern triggered immunity (PTI) and cell wall integrity maintenance in plants. These results suggest how PTI and cell wall modification coordinately regulate biotic stress responses with plants possibly compensating for PTI impairment through enhanced activation of stress responses regulated by the CWI maintenance mechanism.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3