A clinical-anatomical signature of Parkinson’s Disease identified with partial least squares and magnetic resonance imaging

Author:

Zeighami Yashar,Fereshtehnejad Seyed-Mohammad,Dadar Mahsa,Collins D. Louis,Postuma Ronald B.,Mišić Bratislav,Dagher AlainORCID

Abstract

AbstractParkinson’s disease (PD) is a neurodegenerative disorder characterized by a wide array of motor and non-motor symptoms. It remains unclear whether neurodegeneration in discrete loci gives rise to discrete symptoms, or whether network-wide atrophy gives rise to the unique behavioural and clinical profile associated with PD. Here we apply a data-driven strategy to isolate large-scale, multivariate associations between distributed atrophy patterns and clinical phenotypes in PD. In a sample of N = 229 de novo PD patients, we estimate disease-related atrophy using deformation based morphometry (DBM) of T1 weighted MR images. Using partial least squares (PLS), we identify a network of subcortical and cortical regions whose collective atrophy is associated with a clinical phenotype encompassing motor and non-motor features. Despite the relatively early stage of the disease in the sample, the atrophy pattern encompassed lower brainstem, substantia nigra, basal ganglia and cortical areas, consistent with the Braak hypothesis. In addition, individual variation in this putative atrophy network predicted longitudinal clinical progression in both motor and non-motor symptoms. Altogether, these results demonstrate a pleiotropic mapping between neurodegeneration and the clinical manifestations of PD, and that this mapping can be detected even in de novo patients.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3