Abstract
AbstractSingle-cell RNA-seq quantifies biological heterogeneity across both discrete cell types and continuous cell transitions. Partition-based graph abstraction (PAGA) provides an interpretable graph-like map of the arising data manifold, based on estimating connectivity of manifold partitions (https://github.com/theislab/paga). PAGA maps provide interpretable discrete and continuous latent coordinates for both disconnected and continuous structure in data, preserve the global topology of data, allow analyzing data at different resolutions and result in much higher computational efficiency of the typical exploratory data analysis workflow — one million cells take on the order of a minute, a speedup of 130 times compared to UMAP. We demonstrate the method by inferring structure-rich cell maps with consistent topology across four hematopoietic datasets, confirm the reconstruction of lineage relations of adult planaria and the zebrafish embryo, benchmark computational performance on a neuronal dataset and detect a biological trajectory in one deep-learning processed image dataset.
Publisher
Cold Spring Harbor Laboratory
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献