Author:
Liu Sijia,Chen Pin-Yu,Hero Alfred,Rajapakse Indika
Abstract
AbstractMotivationFor many biological systems, it is essential to capture simultaneously the function, structure, and dynamics in order to form a comprehensive understanding of underlying phenomena. The dynamical interaction between 3D genome spatial structure and transcriptional activity creates a genomic signature that we refer to as the four-dimensional organization of the nucleus, or 4D Nucleome (4DN). The study of 4DN requires assessment of genome-wide structure and gene expression as well as development of new approaches for data analysis.ResultsWe propose a dynamic multilayer network approach to study the co-evolution of form and function in the 4D Nucleome. We model the dynamic biological system as a temporal network with node dynamics, where the network topology is captured by chromosome conformation (Hi-C), and the function of a node is measured by RNA sequencing (RNA-seq). Network-based approaches such as von Neumann graph entropy, network centrality, and multilayer network theory are applied to reveal universal patterns of the dynamic genome. Our model integrates knowledge of genome structure and gene expression along with temporal evolution and leads to a description of genome behavior on a system wide level. We illustrate the benefits of our model via a real biological dataset on MYOD1-mediated reprogramming of human fibroblasts into the myogenic lineage. We show that our methods enable better predictions on form-function relationships and refine our understanding on how cell dynamics change during cellular reprogramming.Availability: The software is available upon request.Contactindikar@umich.eduSupplementary informationSee Supplementary Material.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献