A Gelatin Hydrogel to Study Endometrial Angiogenesis and Trophoblast Invasion

Author:

Zambuto Samantha G.,Clancy Kathryn B.H.,Harley Brendan A.C.ORCID

Abstract

ABSTRACTAs the lining of the uterus and site of blastocyst implantation, the endometrium is a dynamic tissue that undergoes rapid cycles of growth, breakdown, and remodeling each menstrual cycle. Significant vascular remodeling is also driven by trophoblast cells that form the outer layer of the blastocyst. Trophoblast invasion and remodeling enhance blood flow to the embryo ahead of placentation. Insight into endometrial vascular remodeling and trophoblast invasion would provide key insights into endometrial physiology and cellular interactions critical for establishment of pregnancy. The objective for this study was to develop a tissue engineering platform to investigate processes of endometrial angiogenesis and trophoblast invasion in a 3D environment. We report adaptation of a methacrylamide-functionalized gelatin hydrogel that presents matrix stiffness in the range of the native tissue. Further, the hydrogel supports the formation of stable endometrial endothelial cell networks and attachment of a stratified endometrial epithelial cell layer, enables culture of a hormone-responsive stromal compartment, and provides the capacity to monitor the kinetics of trophoblast invasion. With these studies, we provide a series of techniques that will instruct researchers in the development of endometrial models of increasing complexity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3