What does mitogenomics tell us about the evolutionary history of the Drosophila buzzatii cluster (repleta group)

Author:

Moreyra Nicolás N.ORCID,Mensch Julián,Hurtado Juan,Almeida Francisca,Laprida Cecilia,Hasson Esteban

Abstract

AbstractThe Drosophila repleta group is an array of more than 100 cactophilic species endemic to the “New World”. The acquisition of the ability to utilize decaying cactus tissues as breeding and feeding sites is a key aspect that allowed the successful diversification of the repleta group in the American deserts. Within this group, the Drosophila buzzatii cluster is a South American clade of seven cactophilic closely related species in different stages of divergence, a feature that makes it a valuable model system for evolutionary research. However, even though substantial effort has been devoted to elucidating the phylogenetic relationships among members of the D. buzzatii cluster, the issue is still controversial. In effect, molecular phylogenetic studies performed to date generated ambiguous results since tree topologies depend on the kind of molecular marker employed. Curiously, even though mitochondrial DNA has become a popular marker in evolutionary biology and population genetics, none of the more than twenty Drosophila mitogenomes assembled so far belongs to this cluster. In this work we report the assembly of six complete mitogenomes of five species: D. antonietae, D. borborema, D. buzzatii, D. seriema and two strains of D. koepferae, with the aim to revisit the phylogenetic relationships and divergence times by means of a mitogenomic approach. The recovered topology using complete mitogenomes gives support to the hypothesis of the monophyly of that the D. buzzatii cluster and shows two main clades, one including D. buzzatii and D. koepferae (both strains) and the other the remaining species. These results are in agreement with previous reports based on a few mitochondrial and/or nuclear genes but in conflict with the results of a recent large-scale nuclear phylogeny, suggesting that nuclear and mitochondrial genomes depict different evolutionary histories.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3