Stable transgenesis in Astyanax mexicanus using the Tol2 transposase system

Author:

Stahl Bethany A.,Peuß Robert,McDole Brittnee,Kenzior Alexander,Jaggard James B.,Gaudenz Karin,Krishnan Jaya,McGaugh Suzanne E.,Duboue Erik R.,Keene Alex C.,Rohner NicolasORCID

Abstract

AbstractAstyanax mexicanus is a well-established and widely used fish model system for evolutionary and developmental biology research. These fish exist as surface forms that inhabit rivers and 30 different populations of cavefish. The establishment of A. mexicanus as an emergent model organism for understanding the evolutionary basis of development and behavior has been accelerated by an increasing availability of genomic approaches to identify genotype-phenotype associations. Despite important progress in the deployment of new technologies, deep mechanistic insights into A. mexicanus evolution and development have been limited by a lack of transgenic lines commonly used in genetic model systems. Here, we expand the toolkit of transgenesis by characterizing two novel stable transgenic lines that were generated using the highly efficient Tol2 system, commonly used to generate transgenic zebrafish. A stable transgenic line consisting of the zebrafish ubiquitin promoter fused to eGFP expressed eGFP ubiquitously throughout development in a surface population of Astyanax. To define specific cell-types, we injected fish with a Cntnap2-mCherry construct that labels lateral line mechanosensory neurons in zebrafish. Strikingly, both constructs appear to label the predicted cell types, suggesting many genetic tools and defined promoter regions in zebrafish are directly transferrable to cavefish. The lines provide proof-of-principle for the application of Tol2 transgenic technology in A. mexicanus. Expansion on these initial transgenic lines will provide a platform to address broadly important problems in the quest to bridge the genotype to phenotype gap.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3