Are populations like a circuit? Comparing isolation by resistance to a new coalescent-based method

Author:

Lundgren Erik,Ralph Peter L.ORCID

Abstract

AbstractA number of methods commonly used in landscape genetics use an analogy to electrical resistance on a network to describe and fit barriers to movement across the landscape using genetic distance data. These are motivated by a mathematical equivalence between electrical resistance between two nodes of a network and the “commute time”, which is the mean time for a random walk on that network to leave one node, visit the other, and return. However, genetic data are more accurately modeled by a different quantity, the coalescence time. Here, we describe the differences between resistance distance and coalescence time, and explore the consequences for inference. We implement a Bayesian method to infer effective movement rates and population sizes under both these models, and find that inference using commute times can produce misleading results in the presence of biased gene flow. We then use forwards-time simulation with continuous geography to demonstrate that coalescence-based inference remains more accurate than resistance-based methods on realistic data, but difficulties highlight the need for methods that explicitly model continuous, heterogeneous geography.

Publisher

Cold Spring Harbor Laboratory

Reference69 articles.

1. Estimating recent migration and population size surfaces

2. David Aldous and James Allen Fill . Reversible Markov chains and random walks on graphs, 2002. Unfinished monograph, recompiled 2014, available at http://www.stat.berkeley.edu/~aldous/RWG/book.html.

3. Demographic inference in a spatially-explicit ecological model from genomic data: a proof of concept for the Mojave Desert Tortoise

4. Genealogies and geography

5. A new model for evolution in a spatial continuum;Electronic Journal of Probability,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3