Long antiparallel open reading frames are unlikely to be encoding essential proteins in prokaryotic genomes

Author:

Moshensky Denis,Alexeevski Andrei

Abstract

AbstractThe origin and evolution of genes that have common base pairs (overlapping genes) are of particular interest due to their influencing each other. Especially intriguing are gene pairs with long overlaps. In prokaryotes, co-directional overlaps longer than 60 bp were shown to be nonexistent except for some instances. A few antiparallel prokaryotic genes with long overlaps were described in the literature. We have analyzed putative long antiparallel overlapping genes to determine whether open reading frames (ORFs) located opposite to genes (antiparallel ORFs) can be protein-coding genes.We have confirmed that long antiparallel ORFs (AORFs) are observed reliably to be more frequent than expected. There are 10 472 000 AORFs in 929 analyzed genomes with overlap length more than 180 bp. Stop codons on the opposite to the coding strand are avoided in 2 898 cases with Benjamini-Hochberg threshold 0.01.Using Ka/Ks ratio calculations, we have revealed that long AORFs do not affect the type of selection acting on genes in a vast majority of cases. This observation indicates that long AORFs translations commonly are not under negative selection.The demonstrative example is 282 longer than 1 800 bp AORFs found opposite to extremely conserveddnaKgenes. Translations of these AORFs were annotated “glutamate dehydrogenases” and were included into Pfam database as third protein family of glutamate dehydrogenases, PF10712. Ka/Ks analysis has demonstrated that if these translations correspond to proteins, they are not subjected by negative selection whilednaKgenes are under strong stabilizing selection. Moreover, we have found other arguments against the hypothesis that these AORFs encode essential proteins, proteins indispensable for cellular machinery.However, some AORFs, in particular,dnaKrelated, have been found slightly resisting to synonymous changes in genes. It indicates the possibility of their translation. We speculate that translations of certain AORFs might have a functional role other than encoding essential proteins.Essential genes are unlikely to be encoded by AORFs in prokaryotic genomes. Nevertheless, some AORFs might have biological significance associated with their translations.Author summaryGenes that have common base pairs are called overlapping genes. We have examined the most intriguing case: if gene pairs encoded on opposite DNA strands exist in prokaryotes. An intersection length threshold 180 bp has been used. A few such pairs of genes were experimentally confirmed.We have detected all long antiparallel ORFs in 929 prokaryotic genomes and have found that the number of open reading frames, located opposite to annotated genes, is much more than expected according to statistical model. We have developed a measure of stop codon avoidance on the opposite strand. The lengths of found antiparallel ORFs with stop codon avoidance are typical for prokaryotic genes.Comparative genomics analysis shows that long antiparallel ORFs (AORFs) are unlikely to be essential protein-coding genes. We have analyzed distributions of features typical for essential proteins among formal translations of all long AORFs: prevalence of negative selection, non-uniformity of a conserved positions distribution in a multiple alignment of homologous proteins, the character of homologs distribution in phylogenetic tree of prokaryotes. All of them have not been observed for the majority of long AORFs. Particularly, the same results have been obtained for some experimentally confirmed AOGs.Thus, pairs of antiparallel overlapping essential genes are unlikely to exist. On the other hand, some antiparallel ORFs affect the evolution of genes opposite that they are located. Consequently, translations of some antiparallel ORFs might have yet unknown biological significance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3