An intermittent control model predicts the triphasic muscles activity during hand reaching

Author:

Leib RazORCID,d’Avella Andrea,Nisky Ilana

Abstract

AbstractThere are numerous ways to reach for an apple hanging from a tree. Yet, our motor system uses a specific muscle activity pattern to generate reaching movements that have similar characteristics. For many decades, we know that this pattern features activity bursts and silent periods. We suggest that these bursts are a strong evidence against the common view that the brain continuously controls the commands to the muscles. Instead, we suggest a model that changes these commands in a discrete way. We use unsupervised machine learning to identify transitions in the state of the muscles, and show that fitting a discrete model to the kinematics of movement using only one parameter predicts the transitions in the state of the muscles. Such discrete controller suggests that the brain reduces the complexity of the motor control problem as well as the wear-and-tear of the muscles by sending commands to the muscles at sparse times. Identifying this discrete controller can be applied in the control of prostheses and physical human-robot interaction systems such as exoskeletons and assistive devices.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3