Interaction between host genes and M. tuberculosis lineage can affect tuberculosis severity: evidence for coevolution

Author:

McHenry Michael L.,Bartlett Jacquelaine,Igo Robert P.,Wampande Edward,Benchek Penelope,Mayanja-Kizza Harriet,Fluegge Kyle,Hall Noemi B.,Gagneux Sebastien,Tishkoff Sarah A.,Wejse Christian,Sirugo Giorgio,Boom W. Henry,Joloba Moses,Williams Scott M.ORCID,Stein Catherine M.ORCID

Abstract

AbstractGenetic studies of both the human host and Mycobacterium tuberculosis (MTB) demonstrate independent association with tuberculosis (TB) risk. However, neither explains a large portion of disease risk or severity. Based on studies in other infectious diseases and animal models of TB, we hypothesized that the genomes of the two interact to modulate risk of developing active TB or increasing the severity of disease, when present. We examined this hypothesis in our TB household contact study in Kampala, Uganda, in which there were 3 MTB lineages of which L4-Ugandan (L4.6) is the most recent. TB severity, measured using the Bandim TBscore, was modeled as a function of host SNP genotype, MTB lineage, and their interaction, within two independent cohorts of TB cases, N=113 and 122. No association was found between lineage and severity, but association between multiple polymorphisms in IL12B and TBscore was replicated in two independent cohorts (most significant rs3212227, combined p=0.0006), supporting previous associations of IL12B with TB susceptibility. We also observed significant interaction between a single nucleotide polymorphism (SNP) in SLC11A1 and the L4-Ugandan lineage in both cohorts (rs17235409, meta p=0.0002). Interestingly, the presence of the L4-Uganda lineage in the presence of the ancestral human allele associated with more severe disease. These findings demonstrate that IL12B is associated with severity of TB in addition to susceptibility, and that the association between TB severity and human genetics can be due to an interaction between genes in the two species, providing evidence of host-pathogen coevolution in TB.AUTHOR SUMMARYSusceptibility to tuberculosis (TB) is affected by genetic variation in both the human host and the causative bacterium, Mycobacterium tuberculosis. However, prior studies of the genetics of each species have not explained a large part of TB risk. The possibility exists that risk can be better estimated from patterns of variation in two species as a unit, such that some combinations provide increased risk, or in the presence of TB, increased disease severity. We hypothesized that alleles in the two species that have co-existed for long periods are more likely to reduce disease severity so as to promote prolonged co-occurrence. We tested this by studying TB severity in two patient cohorts from Uganda for which paired MTB-human DNA were available. We examined severity, as measured by the Bandim TBscore, and assessed whether there was an interaction between MTB lineage and SNPs in the host with this metric. Our results indicate that the most recent TB lineage (L4.6/Uganda) when found together with an ancestral allele in SLC11A1 resulted in more severe disease. This finding is consistent with the conclusion that MTB and human have coevolved to modulate TB severity.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3