Abstract
The effect of drought on maize yield is of particular concern in the context of climate change and human population growth. However, the complexity of drought-response mechanisms makes the design of new drought-tolerant varieties a difficult task that would greatly benefit from a better understanding of the genotype–phenotype relationship. To provide novel insight into this relationship, we applied a systems genetics approach integrating high-throughput phenotypic, proteomic, and genomic data acquired from 254 maize hybrids grown under two watering conditions. Using association genetics and protein coexpression analysis, we detected more than 22,000 pQTLs across the two conditions and confidently identified 15 loci with potential pleiotropic effects on the proteome. We showed that even mild water deficit induced a profound remodeling of the proteome, which affected the structure of the protein coexpression network, and a reprogramming of the genetic control of the abundance of many proteins, including those involved in stress response. Colocalizations between pQTLs and QTLs for ecophysiological traits, found mostly in the water deficit condition, indicated that this reprogramming may also affect the phenotypic level. Finally, we identified several candidate genes that are potentially responsible for both the coexpression of stress response proteins and the variations of ecophysiological traits under water deficit. Taken together, our findings provide novel insights into the molecular mechanisms of drought tolerance and suggest some pathways for further research and breeding.
Funder
Agence Nationale de la Recherche
INRA
Ile-de-France regional council
IBiSA
Saclay Plant Sciences-SPS
Publisher
Cold Spring Harbor Laboratory
Subject
Genetics(clinical),Genetics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献