Six-state amino acid recoding is not an effective strategy to offset the effects of compositional heterogeneity and saturation in phylogenetic analyses

Author:

Hernandez Alexandra M.,Ryan Joseph F.

Abstract

AbstractSix-state amino acid recoding strategies are commonly applied to combat the effects of compositional heterogeneity and substitution saturation in phylogenetic analyses. While these methods have been endorsed from a theoretical perspective, their performance has never been extensively tested. Here, we test the effectiveness of 6-state recoding approaches by comparing the performance of analyses on recoded and non-recoded datasets that have been simulated under gradients of compositional heterogeneity or saturation. In all of our simulation analyses, non-recoding approaches greatly outperformed 6-state recoding approaches. Our results suggest that 6-state recoding strategies are not effective in the face of high saturation. Further, while recoding strategies do buffer the effects of compositional heterogeneity, the loss of information that accompanies 6-state recoding outweighs its benefits, even in the most compositionally heterogeneous datasets. In addition, we evaluate recoding schemes with 9, 12, 15, and 18 states and show that these all outperform 6-state recoding. Our results have important implications for the more than 70 published papers that have incorporated 6-state recoding, many of which have significant bearing on relationships across the tree of life.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3