Pan-cancer screen for mutations in non-coding elements with conservation and cancer specificity reveals correlations with expression and survival

Author:

Hornshøj Henrik,Nielsen Morten Muhlig,Sinnott-Armstrong Nicholas A.,Świtnicki Michał P.,Juul Malene,Madsen Tobias,Sallari Richard,Kellis Manolis,Ørntoft Torben,Hobolth Asger,Pedersen Jakob Skou

Abstract

AbstractCancer develops by accumulation of somatic driver mutations, which impact cellular function. Non-coding mutations in non-coding regulatory regions can now be studied genome-wide and further characterized by correlation with gene expression and clinical outcome to identify driver candidates. Using a new two-stage procedure, called ncDriver, we first screened 507 ICGC whole-genomes from ten cancer types for non-coding elements, in which mutations are both recurrent and have elevated conservation or cancer specificity. This identified 160 significant non-coding elements, including theTERTpromoter, a well-known non-coding driver element, as well as elements associated with known cancer genes and regulatory genes (e.g.,PAX5,TOX3,PCF11,MAPRE3). However, in some significant elements, mutations appear to stem from localized mutational processes rather than recurrent positive selection in some cases. To further characterize the driver potential of the identified elements and shortlist candidates, we identified elements where presence of mutations correlated significantly with expression levels (e.g.TERTandCDH10) and survival (e.g.CDH9andCDH10) in an independent set of 505 TCGA whole-genome samples. In a larger pan-cancer set of 4,128 TCGA exomes with expression profiling, we identified mutational correlation with expression for additional elements (e.g., nearGATA3,CDC6,ZNF217andCTCFtranscription factor binding sites). Survival analysis further pointed toMIR122, a known marker of poor prognosis in liver cancer. This screen for significant mutation patterns followed by correlative mutational analysis identified new individual driver candidates and suggest that some non-coding mutations recurrently affect expression and play a role in cancer development.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3